login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 5^k + 3^k - 1 is prime.
1

%I #33 Jul 29 2023 20:52:29

%S 1,3,9,39,165,11289,44979,192321,377865

%N Numbers k such that 5^k + 3^k - 1 is prime.

%C No additional terms up to 5000. - _Harvey P. Dale_, Feb 01 2011

%C No additional terms up to 1000000. - _Jon Grantham_, Jul 29 2023

%H Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.

%t Select[Range[5000],PrimeQ[5^#+3^#-1]&] (* _Harvey P. Dale_, Feb 01 2011 *)

%o (Magma) [n: n in [0..1000]|IsPrime(5^n+3^n-1)]

%o (PARI) is(n)=ispseudoprime(5^n+3^n-1) \\ _Charles R Greathouse IV_, Jun 13 2017

%o (Python)

%o from sympy import isprime

%o def afind(limit, startk=1):

%o pow5, pow3 = 5**startk, 3**startk

%o for k in range(startk, limit+1):

%o if isprime(pow5 + pow3 - 1): print(k, end=", ")

%o pow5 *= 5; pow3 *= 3

%o afind(1000) # _Michael S. Branicky_, Aug 21 2021

%Y Cf. A155603.

%K nonn,more

%O 1,2

%A _Vincenzo Librandi_, Jan 22 2011

%E a(6) from _Michael S. Branicky_, Aug 21 2021

%E a(7) from _Michael S. Branicky_, May 13 2023

%E a(8), a(9) from _Jon Grantham_, Jul 29 2023