Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 08 2022 08:45:54
%S 1,2,5,16,57,206,737,2612,9213,32442,114205,402072,1415713,4985126,
%T 17554489,61816252,217679141,766531986,2699251381,9505089568,
%U 33471028105,117864194430,415044573969,1461529529924,5146600421325
%N The Ze2 sums of the Pell-Jacobsthal triangle A013609.
%C The a(n) represent the Ze2 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these zebra and other chess sums.
%H G. C. Greubel, <a href="/A180678/b180678.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,8).
%F a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=2 and a(2)= 5.
%F a(n) = Sum_{k=0..floor(n/2)} A013609(n+k,n-2*k).
%F G.f.: (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3).
%p nmax:=24: a(0):=1: a(1):=2: a(2):=5: for n from 3 to nmax do a(n) := 6*a(n-1)-11*a(n-2)+8*a(n-3) od: seq(a(n),n=0..nmax);
%t LinearRecurrence[{6,-11,8}, {1,2,5}, 30] (* or *) CoefficientList[ Series[(1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3), {x,0,30}], x] (* _G. C. Greubel_, Jun 06 2019 *)
%o (PARI) my(x='x+O('x^30)); Vec((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)) \\ _G. C. Greubel_, Jun 06 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3) )); // _G. C. Greubel_, Jun 06 2019
%o (Sage) ((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 06 2019
%o (GAP) a:=[1,2,5];; for n in [4..30] do a[n]:=6*a[n-1]-11*a[n-2]+8*a[n-3]; od; a; # _G. C. Greubel_, Jun 06 2019
%Y Cf. A140413 (Ze1), A180678 (Ze2), A097117 (Ze3), A055588 (Ze4).
%K easy,nonn
%O 0,2
%A _Johannes W. Meijer_, Sep 21 2010