login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The maximum number of points obtainable in a game of Entanglement on a board of radius n.
1

%I #23 May 06 2024 01:45:02

%S 41,1613,9080,29462,72479,150551,278798,475040,759797,1156289,1690436,

%T 2390858,3288875,4418507,5816474,7522196,9577793,12028085,14920592,

%U 18305534,22235831,26767103,31957670

%N The maximum number of points obtainable in a game of Entanglement on a board of radius n.

%C The standard board has a radius of 3 and a maximum score of a(3) = 9080.

%H Harvey P. Dale, <a href="/A180667/b180667.txt">Table of n, a(n) for n = 1..1000</a>

%H GopherWood Studios, <a href="http://entanglement.gopherwoodstudios.com">Entanglement</a>

%H Nathaniel Johnston, <a href="http://www.nathanieljohnston.com/2011/01/the-maximum-score-in-the-game-entanglement-is-9080/">The Maximum Score in the Game "Entanglement" is 9080</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (225/2)*n^4 + 45*n^3 - 135*n^2 - (51/2)*n + 44.

%F a(n) = +5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+ a(n-5).

%F G.f.: -x*(41+1408*x+1425*x^2-218*x^3+44*x^4)/(x-1)^5.

%t LinearRecurrence[{5,-10,10,-5,1},{41,1613,9080,29462,72479},30] (* _Harvey P. Dale_, Jul 04 2019 *)

%K nonn,easy

%O 1,1

%A _Nathaniel Johnston_, Jan 21 2011