login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180641
Primes P such that P > (largest prime factor of (P-1)) * (largest prime factor of (P+1)).
2
7, 17, 19, 31, 41, 53, 71, 79, 89, 97, 101, 109, 127, 151, 163, 181, 191, 197, 199, 239, 241, 251, 257, 271, 307, 337, 349, 379, 401, 419, 431, 433, 449, 461, 463, 487, 491, 499, 521, 571, 577, 593, 599, 601, 631, 641, 647, 659, 683, 701, 727, 751, 769, 809
OFFSET
1,1
LINKS
EXAMPLE
Example: For n = 3, a(3)=19.
The prime P = 19
P-1 = 18 (largest prime factor of 18 is 3)
P+1 = 20 (largest prime factor of 20 is 5)
19 > 3*5.
MATHEMATICA
lpfQ[n_]:=Module[{a=FactorInteger[n-1][[-1, 1]], b=FactorInteger[n+1][[-1, 1]]}, n>a*b]; Select[Prime[Range[200]], lpfQ] (* Harvey P. Dale, Aug 16 2013 *)
PROG
(PARI) lpf(n) = {f = factor(n); return (f[#f~, 1]); }
lista(nn) = {forprime(p=3, nn, if ((p > lpf(p-1)*lpf(p+1)), print1(p, ", "); ); ); } \\ Michel Marcus, Jul 25 2013
CROSSREFS
Cf. A180640. See also A103666, A103667.
Sequence in context: A106123 A156011 A155774 * A234095 A354168 A287182
KEYWORD
nonn
AUTHOR
Karl Hovekamp, Sep 14 2010
STATUS
approved