login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = number of binary words of length n avoiding 010 and having k 1's.
3

%I #71 Apr 01 2024 02:41:51

%S 1,1,1,1,2,1,1,2,3,1,1,2,4,4,1,1,2,5,7,5,1,1,2,6,10,11,6,1,1,2,7,13,

%T 18,16,7,1,1,2,8,16,26,30,22,8,1,1,2,9,19,35,48,47,29,9,1,1,2,10,22,

%U 45,70,83,70,37,10,1,1,2,11,25,56,96,131,136,100,46,11

%N Triangle read by rows: T(n,k) = number of binary words of length n avoiding 010 and having k 1's.

%C T(n+k-1,k-1) also gives the number of nonnegative integer solutions of x_1 + x_2 + ... + x_k = n, such that every two consecutive terms cannot be both nonzero.

%C Absolute values of coefficients of the characteristic polynomial of square matrices with 1's along and everywhere above the main diagonal, 1's along the subsubdiagonal, and 0's everywhere else. - _John M. Campbell_, Aug 20 2011

%C Row sums yield sequence A005251. Alternating row sums yield sequence A000931. - _John M. Campbell_, Apr 20 2012

%C Can also be regarded as an infinite array read by antidiagonals [Baccherini et al., 2007]. - _N. J. A. Sloane_, Mar 25 2014

%H Alois P. Heinz, <a href="/A180562/b180562.txt">Rows n = 0..140, flattened</a>

%H D. Baccherini, D. Merlini, and R. Sprugnoli, <a href="http://dx.doi.org/10.1016/j.disc.2006.07.023">Binary words excluding a pattern and proper Riordan arrays</a>, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See top of p. 1022. - _N. J. A. Sloane_, Mar 25 2014

%H David Eppstein, <a href="https://arxiv.org/abs/2303.00147">Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time</a>, arXiv:2303.00147 [cs.CG], 2023, p. 9.

%F G.f.: (1+x^2*y)/(1-x-x*y+x^2*y-x^3*y^2).

%F T(n,k) = Sum_{j=0..n-k} (-1)^j * C(n-k-1,j) * C(abs(n-2*j),k-j) with k=0..n.

%F T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,0) = T(2,2) = 1, T(2,1) = 2, T(nk) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Mar 25 2014

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 2, 3, 1;

%e 1, 2, 4, 4, 1;

%e 1, 2, 5, 7, 5, 1;

%e 1, 2, 6, 10, 11, 6, 1;

%e 1, 2, 7, 13, 18, 16, 7, 1;

%e 1, 2, 8, 16, 26, 30, 22, 8, 1;

%e T(5,3)=7 because we have 00111, 01101, 01110, 10011, 10110, 11001, 11100.

%e As an infinite square array:

%e 1 1 1 1 1 1 1 ...

%e 1 2 3 4 5 6 7 ...

%e 1 2 4 7 11 16 22 ...

%e 1 2 5 10 18 30 47 ...

%e 1 2 6 13 26 48 83 ...

%e 1 2 7 16 35 70 131 ...

%e 1 2 8 19 45 96 192 ...

%e ...

%t Series[(1 + x^2*y)/(1- x - x*y + x^2*y - x^3*y^2), {x, 0, 20}, {y, 0, 10}]

%t t[n_, k_] := Sum[(-1)^j*Binomial[n - k - 1, j]*Binomial[n - 2*j, k - j], {j, 0, n - k}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 30 2013 *)

%o (Magma) /* As triangle: */ [[&+[(-1)^j*Binomial(n-k-1,j)*Binomial(n-2*j,k-j): j in [0..n-k]]: k in [0..n]]: n in [0..11]]; // _Bruno Berselli_, Jan 30 2013

%Y See A239101 for another version of this triangle or array.

%Y Cf. A124445.

%K nonn,tabl

%O 0,5

%A Ioanna Arsenopoulou (io85arseno(AT)yahoo.gr), Sep 09 2010