

A180515


E.g.f. A(x) satisfies A''(x)=2*A(x)^3+x*A(x)+1.


0



0, 0, 1, 0, 0, 3, 0, 0, 198, 0, 0, 15390, 0, 0, 4611168, 0, 0, 1829539224, 0, 0, 1492247906784, 0, 0, 1669958449339824
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

The exponential generating function A(x) = x^2/+x^5/40 +11*x^8/2240+... satisfies the PainlevĂ© II equation A''(x) = 2*A(x)^3+x*A(x)+1. This is the case b=1 of the more general A''(x) = 2*A(x)^3+x*A(x)+b which has a solution a(0)=a(1)=0, a(2)=b/2, a(3)=a(4)=0 and, for n>4, a(n) = (2*A(n2,3)+a(n3)) / (n*(n1)) where A(n,1)=a(n) and the components of A(n,k) with k>1 are recursively A(n,k) = sum_{i=0..nk} a(i+1)*A(ni1,k1).


LINKS

Table of n, a(n) for n=0..23.


CROSSREFS

Sequence in context: A160537 A215516 A009133 * A009138 A175562 A319330
Adjacent sequences: A180512 A180513 A180514 * A180516 A180517 A180518


KEYWORD

nonn


AUTHOR

Vladimir Kruchinin, Jan 21 2011


STATUS

approved



