Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 31 2018 10:58:37
%S 1023456798,1023456789,1023467895,1023456798,1024375869,1023456798,
%T 1023457698,1023458769,1023475689,1023468957,1023458769,1023654987,
%U 1023458769,1023469875,1023467958,1023459786,1023457896,1023458976
%N Smallest pandigital number (A171102) divisible by the n-th prime A000040(n).
%C Digits may appear more than once in the multiple, resulting in 11-or-more-digit values of a(n). The first entry for which that happens is a(10545), because the smallest multiple of the 10545th prime 111119 that contains all the digits 0-9 is 92373 * 111119 = 10264395387, and all smaller primes have 10-digit pandigital multiples. - _David J. Seal_, Sep 18 2017
%H Ray Chandler, <a href="/A180489/b180489.txt">Table of n, a(n) for n=1..10000</a>
%e a(1) is the smallest pandigital number divisible by prime(1) = 2, which is 1023456798. - _David J. Seal_, Sep 18 2017
%t With[{s = Select[FromDigits@ # & /@ Permutations[Range[0, 9], {10}], # > 10^9 &]}, Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 18}]] (* _Michael De Vlieger_, Sep 18 2017, after _Robert G. Wilson v_ at A171102 *)
%Y Cf. A050278, A061604, A171102, A274328.
%K nonn,base
%O 1,1
%A _Lekraj Beedassy_, Sep 08 2010