login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180342
a(n) = the smallest number k such that the smallest prime factor of k^2 + 1 equals A002144(n).
0
2, 34, 4, 46, 6, 50, 76, 194, 100, 144, 366, 10, 730, 324, 374, 254, 286, 266, 886, 274, 14, 794, 610, 546, 16, 456, 494, 334, 724, 964, 520, 526, 834, 664, 1596, 504, 3510, 20, 2720, 1234, 1120, 516, 566, 874, 810, 756, 1134, 2110, 1224, 24, 670, 726
OFFSET
1,1
COMMENTS
The sequence giving the smallest number k such that the greatest prime factor of k^2 + 1 equals A002144(n) is A002314.
EXAMPLE
a(1) = 2 because 2^2 + 1 = 5 = A002144(1) ;
a(2) = 34 because 34^2 + 1= 13*89 = A002144(2) * 89 ;
a(3) = 4 because 4^2 + 1 = 17 = A002144(3) ;
a(4) = 46 because 46^2 + 1 = 29*73 = A002144(4) * 73.
MAPLE
with(numtheory):T:=array(1..200):k:=1:for p from 1 to 1000 do: if type(p, prime)=true
and irem(p, 4)=1 then T[k]:=p:k:=k+1:else fi:od:for q from 1 to k do:z:=T[q]:ind:=0:for n from 1 to 10000 while(ind=0) do: x:=n^2+1:y:=factorset(x):if z=y[1] then ind:=1:printf(`%d, `, n):else fi:od: od:
CROSSREFS
Sequence in context: A003820 A112980 A109336 * A343905 A232591 A098869
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 18 2011
STATUS
approved