login
Triangle by rows, A137710 * a diagonalized variant of A001906.
2

%I #9 Jan 22 2023 09:16:30

%S 1,2,1,4,1,3,8,2,3,8,16,4,6,8,21,32,8,12,16,21,55,64,16,24,32,42,55,

%T 144,128,32,48,64,84,110,144,377,256,64,96,128,168,220,288,377,987

%N Triangle by rows, A137710 * a diagonalized variant of A001906.

%C Row sums = the even-indexed Fibonacci numbers starting (1, 3, 8, 21, ...).

%C Triangle A137710 has (1, 2, 4, 8, 16, ...) as the left border with all other columns = (1, 1, 2, 4, 8, 16,...). The eigensequence of this triangle = the odd-indexed Fibonacci numbers: (1, 3, 8, 21, 55, ...).

%C Row sums of n-th row = rightmost term of next row.

%F Let triangle A137710 = M as an infinite lower triangular matrix, with Q = a diagonalized variant of A001906 (1, 1, 3, 8, 21, 55,... as the main diagonal and the rest zeros). This triangle = M*Q.

%e First few rows of the triangle:

%e 1;

%e 2, 1;

%e 4, 1, 3;

%e 8, 2, 3, 8;

%e 16, 4, 6, 8, 21;

%e 32, 8, 12, 16, 21, 55;

%e 64, 16, 24, 32, 42, 55, 144;

%e 128, 32, 48, 64, 84, 110, 144, 377;

%e 256, 64, 96, 128, 168, 220, 288, 377, 987;

%e 512, 128, 192, 256, 336, 440, 576, 754, 987, 2584;

%e ...

%Y Cf. A137710, A001906.

%K nonn,tabl,more

%O 0,2

%A _Gary W. Adamson_, Aug 28 2010