Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Sep 08 2022 08:45:54
%S 3,1,4,1,6,4,0,7,8,6,4,9,9,8,7,3,8,1,7,8,4,5,5,0,4,2,0,1,2,3,8,7,6,5,
%T 7,4,1,2,6,4,3,7,1,0,1,5,7,6,6,9,1,5,4,3,4,5,6,2,5,3,8,3,4,7,2,4,6,3,
%U 1,2,5,5,5,3,8,2,6,8,2,9,3,9,6,4,8,6,4,8,6,4,5,0,2,7,2,6,9,3,6,4,9,8,1,7,0,4,9,0,5,6,9,0,4,6
%N Decimal expansion of 6*(phi+1)/5, where phi is (1 + sqrt(5))/2.
%C This is an approximation to Pi.
%C 6*(phi+1)/5 is not equal to Pi, although some have claimed this (see Dudley). - _Kellen Myers_, Oct 04 2013
%D Underwood Dudley, Mathematical Cranks, MAA 1992, pp. 247, 292.
%D Alfred S. Posamentier and Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, New York, Prometheus Books, 2007, p. 119.
%H G. C. Greubel, <a href="/A180251/b180251.txt">Table of n, a(n) for n = 1..10000</a>
%H Hung Viet Chu, <a href="https://arxiv.org/abs/1908.01202">Square the Circle in One Minute</a>, arXiv:1908.01202 [math.GM], 2019.
%H Futility Closet, <a href="http://www.futilitycloset.com/2011/01/16/a-surprise-visitor/">A Surprise Visitor</a>
%F Limit of A022089(n+2)/A022088(n) as n approaches infinity.
%F 6*(phi + 1)/5 = 6*phi^2/5 = 3(3 + sqrt(5))/5 = 9/5 + sqrt(9/5). - _Charles R Greathouse IV_, Sep 13 2013
%F Equals 24/(5-sqrt(5))^2. - _Joost Gielen_, Sep 20 2013
%e 3.141640786499873817845504201238765741264371015766915434562538347246312555382...
%t RealDigits[(6/5)GoldenRatio^2, 10, 100][[1]] (* _Alonso del Arte_, Apr 09 2012 *)
%o (PARI) 3*(3+sqrt(5))/5 \\ _Charles R Greathouse IV_, Sep 13 2013
%o (Magma)(3/10)*(1 + Sqrt(5))^2 // _G. C. Greubel_, Jan 17 2018
%Y Cf. A022088, A022089, A001622, A000796.
%K nonn,cons
%O 1,1
%A _Grant Garcia_, Jan 16 2011