login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of permutations p of [n] for which k is the smallest among the positive differences p(i+1) - p(i); k=0 for the reversal of the identity permutation (0<=k<=n-1).
3

%I #17 Dec 08 2019 07:40:29

%S 1,1,1,1,3,2,1,13,6,4,1,67,30,14,8,1,411,178,80,34,16,1,2921,1236,530,

%T 234,86,32,1,23633,9828,4122,1744,702,226,64,1,214551,88028,36320,

%U 14990,6094,2154,614,128,1,2160343,876852,357332,145242,58468,21842,6750,1714,256

%N Triangle read by rows: T(n,k) is the number of permutations p of [n] for which k is the smallest among the positive differences p(i+1) - p(i); k=0 for the reversal of the identity permutation (0<=k<=n-1).

%C Terms obtained by counting with a time-consuming Maple program.

%C Sum of entries in row n = n! = A000142(n).

%C T(n,1) = A180191(n).

%H Alois P. Heinz, <a href="/A180190/b180190.txt">Rows n = 1..18, flattened</a>

%F Sum_{k=0..n-1} k * T(n,k) = A018927(n). - _Alois P. Heinz_, Feb 21 2019

%e T(4,2) = 6 because we have 1324, 4132, 2413, 4213, 2431, and 3241.

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 3, 2;

%e 1, 13, 6, 4;

%e 1, 67, 30, 14, 8;

%e ...

%p with(combinat): minasc := proc (p) local j, b: for j to nops(p)-1 do if 0 < p[j+1]-p[j] then b[j] := p[j+1]-p[j] else b[j] := infinity end if end do: if min(seq(b[j], j = 1 .. nops(p)-1)) = infinity then 0 else min(seq(b[j], j = 1 .. nops(p)-1)) end if end proc; for n to 10 do P := permute(n): f[n] := sort(add(t^minasc(P[j]), j = 1 .. factorial(n))) end do: for n to 10 do seq(coeff(f[n], t, i), i = 0 .. n-1) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(s, l, m) option remember; `if`(s={}, x^`if`(m=infinity, 0, m),

%p add(b(s minus {j}, j, `if`(j<l, m, min(m, j-l))), j=s))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b({$1..n}, infinity$2)):

%p seq(T(n), n=1..10); # _Alois P. Heinz_, Feb 21 2019

%t b[s_List, l_, m_] := b[s, l, m] = If[s == {}, x^If[m == Infinity, 0, m], Sum[b[s ~Complement~ {j}, j, If[j < l, m, Min[m, j - l]]], {j, s}]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n - 1}]][b[ Range[n], Infinity, Infinity]];

%t T /@ Range[10] // Flatten (* _Jean-François Alcover_, Dec 08 2019, after _Alois P. Heinz_ *)

%Y Cf. A000142, A018927, A180191.

%K nonn,tabl

%O 1,5

%A _Emeric Deutsch_, Sep 07 2010