login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest strong pseudoprime to base 2 with n prime factors.
5

%I #13 Mar 05 2023 01:37:14

%S 2047,15841,800605,293609485,10761055201,5478598723585,

%T 713808066913201,90614118359482705,5993318051893040401,

%U 24325630440506854886701,27146803388402594456683201,4365221464536367089854499301,2162223198751674481689868383601,548097717006566233800428685318301

%N Smallest strong pseudoprime to base 2 with n prime factors.

%H Daniel Suteu, <a href="/A180065/b180065.txt">Table of n, a(n) for n = 2..17</a>

%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>

%e 800605 is the third term because 800605 = 5 * 13 * 109 * 113, more prime factors than smaller 2-strong pseudoprimes.

%o (PARI)

%o strong_check(p, base, e, r) = my(tv=valuation(p-1, 2)); tv > e && Mod(base, p)^((p-1)>>(tv-e)) == r;

%o strong_fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k, e, r) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1 && strong_check(p, base, e, r), my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; strong_check(p, base, e, r) || next; my(z=znorder(Mod(base, p))); gcd(m,z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1, e, r)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); my(res=f(1, 1, 2, k, 0, 1)); for(v=0, logint(B, 2), res=concat(res, f(1, 1, 2, k, v, -1))); vecsort(Set(res));

%o a(n) = if(n < 2, return()); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=strong_fermat_psp(x, y, n, 2)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ _Daniel Suteu_, Mar 04 2023

%Y Cf. A007011, A001262.

%K nonn

%O 2,1

%A Kevin Batista (kevin762401(AT)yahoo.com), Aug 09 2010

%E a(6)-a(10) and editing from _Charles R Greathouse IV_, Aug 29 2010

%E a(11)-a(15) from _Daniel Suteu_, Sep 24 2022