login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of permutations of {1,2,...,2n} with n ascents.
11

%I #50 Nov 13 2024 22:45:23

%S 1,1,11,302,15619,1310354,162512286,27971176092,6382798925475,

%T 1865385657780650,679562217794156938,301958232385734088196,

%U 160755658074834738495566,101019988341178648636047412,73990373947612503295166622044,62481596875767023932367207962680

%N The number of permutations of {1,2,...,2n} with n ascents.

%C Define the Eulerian numbers A(n,k) (see A008292) to be the number of permutations of {1,2,..,n} with k ascents: A(n,k) = Sum_{j=0..k} (-1)^j binomial(n+1,j)*(k-j+1)^n.

%C Then a(n) = A(2*n,n) are the central Eulerian numbers. (Analogous to what are called the central binomial coefficients).

%H Alois P. Heinz, <a href="/A180056/b180056.txt">Table of n, a(n) for n = 0..200</a>

%H Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/26.14#T1">Table 26.14.1</a>

%F a(n-1) = A025585(n)/(2*n). - _Gary Detlefs_, Nov 11 2011

%F a(n+1)/a(n) ~ 4*n^2. - _Ran Pan_, Oct 26 2015

%F a(n) ~ sqrt(3) * 2^(2*n+1) * n^(2*n) / exp(2*n). - _Vaclav Kotesovec_, Oct 16 2016

%F From _Alois P. Heinz_, Jul 21 2018: (Start)

%F a(n) = ceiling(1/2 * (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x))).

%F a(n) = (2n)! * [x^(2n) y^n] (1-y)/(1-y*exp((1-y)*x)). (End)

%F a(n) = A123125(2n,n). - _Alois P. Heinz_, Nov 13 2024

%p A180056 :=

%p proc(n) local j;

%p add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)

%p end:

%p # A180056_list(m) returns [a_0,a_1,..,a_m]

%p A180056_list :=

%p proc(m) local A, R, M, n, k;

%p R := 1; M := m + 1;

%p A := array([seq(1, n = 1..M)]);

%p for n from 2 to M do

%p for k from 2 to M do

%p if n = k then R := R, A[k] fi;

%p A[k] := n*A[k-1] + k*A[k]

%p od

%p od;

%p R

%p end:

%t A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* _Jean-François Alcover_, Jun 28 2013, after _Gary Detlefs_ *)

%t << Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 15 2016 *)

%o (Python)

%o def A180056_list(m):

%o ret = [1]

%o M = m + 1

%o A = [1 for i in range(0, M)]

%o for n in range(2, M):

%o for k in range(2, M):

%o if n == k:

%o ret.append(A[k])

%o A[k] = n*A[k-1] + k*A[k]

%o return ret

%Y A bisection of A006551.

%Y Cf. A008292, A025585, A123125, A303284, A303285, A303286, A303287.

%Y A diagonal of A321967.

%K nonn

%O 0,3

%A _Peter Luschny_, Aug 08 2010

%E Partially edited by _N. J. A. Sloane_, Aug 08 2010