Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Dec 24 2021 21:54:25
%S 1,0,1,3,0,1,0,7,0,1,15,0,12,0,1,0,57,0,18,0,1,105,0,141,0,25,0,1,0,
%T 561,0,285,0,33,0,1,945,0,1830,0,510,0,42,0,1,0,6555,0,4680,0,840,0,
%U 52,0,1,10395,0,26685,0,10290,0,1302,0,63,0,1,0,89055,0,82845,0,20370,0,1926,0,75,0,1
%N Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... .
%C Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!). Row sums equal A059480.
%H <a href="http://www.komal.hu/forum/forum.cgi?a=to&tid=94&st=50&dr=1&sp=1233">Hungarian discussion forum</a>
%F b(0)=1; b(1)=w; b(n) = w*b(n-1) + (n+1)*b(n-2) (conjecture).
%e The numerator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 57w + 18w^3 + w^5.
%e From _Philippe Deléham_, Nov 06 2013: (Start)
%e Triangle begins:
%e 1;
%e 0, 1;
%e 3, 0, 1;
%e 0, 7, 0, 1;
%e 15, 0, 12, 0, 1;
%e 0, 57, 0, 18, 0, 1;
%e 105, 0, 141, 0, 25, 0, 1;
%e 0, 561, 0, 285, 0, 33, 0, 1;
%e 945, 0, 1830, 0, 510, 0, 42, 0, 1;
%e 0, 6555, 0, 4680, 0, 840, 0, 52, 0, 1;
%e 10395, 0, 26685, 0, 10290, 0, 1302, 0, 63, 0, 1;
%e ... (End)
%e [extended by _M. F. Hasler_, Oct 21 2014]
%t Table[ CoefficientList[ Numerator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 2, 16} ] or equivalently Clear[ b ]; b[ 0 ]=1; b[ 1 ]=w; b[ n_ ]:=b[ n ] = w b[ n-1 ]+(n+1) b[ n-2 ]; Table[ CoefficientList[ b[ k ]//Expand, w ], {k, 0, 14} ]
%o (PARI) t=x-w;for(n=1,12,t=substpol(t,x,w+n/x);print(Vecrev(numerator(substpol(t,x,w))))) \\ _M. F. Hasler_, Oct 21 2014
%Y Cf. A059480, A084950, A180047, A180048, A230698.
%K nonn,tabl
%O 1,4
%A _Wouter Meeussen_, Aug 08 2010