login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Combinatorial tetrahedral numbers
1

%I #8 Jun 12 2021 12:51:58

%S 1,112,111223,1111222334,111112222333445,111111222223333444556,

%T 1111111222222333334444555667,111111112222222333333444445555666778,

%U 111111111222222223333333444444555556666777889

%N Combinatorial tetrahedral numbers

%C These are partial sums in adding base-1 triangular numbers (1 + 111 + 111111 + 1111111111,...).

%C Third row of:

%C 1,2,3,4,5,...

%C 1,12,123,1234,12345,...

%C 1,112,111223,1111222334,111112222333445,...

%C 1,1112,1111112223,11111111112222223334,11111111111111122222222223333334445,..

%F a(n) = Sum_{i=1..n} A002275(A000217(i)). - _R. J. Mathar_, Nov 02 2016

%e For n=4, a(4)= 1 + 111 + 111111 + 1111111111 = 1111222334.

%e Combinatorially:

%e 1,12,123,1234,12345,123456,...

%e 1,21,321,4321,54321,654321,...

%e ----------------------------- X

%e 1,112,111223,1111222334.......

%e For n =(4),a(4)= 4 x 1 + 3 x 2 + 2 x 3 + 1 x 4 = 1111 + 222 + 33 + 4 = 1111222334.

%t Accumulate[Table[FromDigits[PadRight[{},n,1]],{n,Accumulate[Range[10]]}]] (* _Harvey P. Dale_, Jun 12 2021 *)

%Y Cf. A000292, A014824, A180027.

%K nonn,easy,base

%O 1,2

%A _Mark Dols_, Aug 07 2010