login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179903
(1, 3, 5, 7, 9, ...) convolved with (1, 0, 3, 5, 7, 9, ...).
1
1, 3, 8, 21, 46, 87, 148, 233, 346, 491, 672, 893, 1158, 1471, 1836, 2257, 2738, 3283, 3896, 4581, 5342, 6183, 7108, 8121, 9226, 10427, 11728, 13133, 14646, 16271, 18012, 19873, 21858, 23971, 26216, 28597, 31118, 33783, 36596, 39561, 42682, 45963
OFFSET
0,2
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
G.f.: (1 + 3*x + 8*x^2 + 21*x^3 + ...) = (1 + 3*x + 5*x^2 + 7*x^3 + 9*x^4 + ...) * (1 + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 + ...).
From R. J. Mathar, Aug 13 2010: (Start)
a(n) = 2 + A005900(n), n > 0.
G.f.: -(1 + x)*(x^3 - 4*x^2 + 2*x - 1)/(x - 1)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 04 2012
EXAMPLE
a(5) = 46 = (9, 7, 5, 3, 1) dot (1, 0, 3, 5, 7) = 9 + 0 + 15 + 15 + 7.
MATHEMATICA
CoefficientList[Series[-(1+x)*(x^3-4*x^2+2*x-1)/(x-1)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 04 2012 *)
Join[{1}, Table[ListConvolve[Range[1, 2n+1, 2], Join[{1, 0}, Range[3, 2n-1, 2]]], {n, 50}]// Flatten] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 3, 8, 21, 46}, 50] (* Harvey P. Dale, Jan 30 2023 *)
PROG
(Magma) I:=[1, 3, 8, 21, 46]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
Cf. A005900.
Sequence in context: A101332 A007773 A071078 * A363601 A193045 A238831
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 31 2010
STATUS
approved