Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 10 2016 17:06:46
%S 0,1,4,9,12,25,60,121,220,441,924,1849,3612,7225,14620,29241,58140,
%T 116281,233244,466489,931612,1863225,3729180,7458361,14911260,
%U 29822521,59655964,119311929,238602012,477204025,954451740,1908903481,3817719580
%N Number of n X 3 arrays with every diagonal and antidiagonal of length L containing a permutation of 1..L.
%H R. H. Hardin, <a href="/A179808/b179808.txt">Table of n, a(n) for n=3..99</a>
%F Empirical: a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)+2*a(n-4)-4*a(n-5); G.f.: -(-x-2*x^2-2*x^3+4*x^4)*x^3 / (1-2*x+x^2-2*x^3-2*x^4+4*x^5).
%e All solutions for 5 X 3:
%e .1.1.1...1.1.1...1.2.1...1.2.1
%e .2.2.2...2.3.2...1.3.1...1.2.1
%e .3.3.3...2.3.2...2.3.2...3.3.3
%e .1.2.1...1.3.1...2.3.2...2.2.2
%e .1.2.1...1.2.1...1.1.1...1.1.1
%K nonn
%O 3,3
%A _R. H. Hardin_, formula from _Alois P. Heinz_ in the Sequence Fans Mailing List, Jul 28 2010