login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form p^8*q*r where p, q, and r are distinct primes.
4

%I #8 May 13 2013 01:49:24

%S 3840,5376,8448,8960,9984,13056,14080,14592,16640,17664,19712,21760,

%T 22272,23296,23808,24320,28416,29440,30464,31488,33024,34048,36096,

%U 36608,37120,39680,40704,41216,45312,46848,47360,47872,51456,51968,52480,53504,54528

%N Numbers of the form p^8*q*r where p, q, and r are distinct primes.

%H T. D. Noe, <a href="/A179747/b179747.txt">Table of n, a(n) for n = 1..1000</a>

%H Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>

%t f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,8};Select[Range[60000], f]

%o (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/8), t1=p^8;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 24 2011

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jul 25 2010