Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 20 2017 11:59:18
%S 3360,5280,6240,7392,8160,8736,9120,11040,11424,12320,12768,13728,
%T 13920,14560,14880,15456,17010,17760,17952,19040,19488,19680,20064,
%U 20640,20832,21216,21280,22560,22880,23712,24288,24864,25440,25760,26730
%N Numbers of the form p^5*q*r*s where p, q, r, and s are distinct primes.
%H T. D. Noe, <a href="/A179704/b179704.txt">Table of n, a(n) for n = 1..1000</a>
%H Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>
%H <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%t f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,5}; Select[Range[30000], f]
%o (PARI) list(lim)=my(v=List(),t1,t2,t3); forprime(p=2,sqrtnint(lim\30, 5), t1=p^5; forprime(q=2,lim\(6*t1), if(q==p, next); t2=q*t1; forprime(r=2,lim\(2*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\t3, if(s==p || s==q || s==r, next); listput(v, t3*s))))); Set(v) \\ _Charles R Greathouse IV_, Aug 25 2016
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jul 24 2010