login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of the 4th power of a prime and 2 different distinct primes (p^4*q*r).
13

%I #18 Feb 16 2024 10:07:10

%S 240,336,528,560,624,810,816,880,912,1040,1104,1134,1232,1360,1392,

%T 1456,1488,1520,1776,1782,1840,1904,1968,2064,2106,2128,2256,2288,

%U 2320,2480,2544,2576,2754,2832,2835,2928,2960,2992,3078,3216,3248,3280,3344,3408

%N Product of the 4th power of a prime and 2 different distinct primes (p^4*q*r).

%H T. D. Noe, <a href="/A179644/b179644.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>

%H <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>

%e 240=2^4*3*5,336=2^4*3*7,..810=2^3^4*5,..

%t f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,4}; Select[Range[4000], f]

%t Take[Union[#[[1]]^4 #[[2]]#[[3]]&/@(Flatten[Permutations/@ Subsets[ Prime[ Range[ 20]],{3}],1])],50] (* _Harvey P. Dale_, Feb 07 2013 *)

%o (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/4),forprime(q=2,sqrt(lim\p^4),if(p==q,next);t=p^4*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 19 2011

%Y Cf. A006881, A007304, A065036, A085986, A085987, A178739, A179642, A179643.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jul 21 2010