login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of exactly 5 primes, 3 of which are distinct.
10

%I #8 May 13 2013 01:49:24

%S 120,168,180,252,264,270,280,300,312,378,396,408,440,450,456,468,520,

%T 552,588,594,612,616,680,684,696,700,702,728,744,750,760,828,882,888,

%U 918,920,945,952,980,984,1026,1032,1044,1064,1100,1116,1128,1144,1160

%N Product of exactly 5 primes, 3 of which are distinct.

%H T. D. Noe, <a href="/A179642/b179642.txt">Table of n, a(n) for n = 1..1000</a>

%H Will Nicholes, <a href="http://willnicholes.com/math/primesiglist.htm">Prime Signatures</a>

%e 120=2^3*3*5, 168=2^3*3*7, 180=2^2*3^2*5, 252=2^2*3^2*7, 264=2^3*3*11, 270=2*3^3*5

%t f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3} || Sort[Last/@FactorInteger[n]]=={1,2,2}; Select[Range[2000], f]

%o (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));forprime(p=2,sqrt(lim\12),forprime(q=p+1,sqrt(lim\p^2\2),t=(p*q)^2;forprime(r=2,lim\t,if(p==r||q==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 19 2011

%Y Union of A189975 and A179643.

%Y Cf. A006881, A007304, A085986, A085987, A178739.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jul 21 2010