login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179624
Collatz trajectory starting at 230631.
1
230631, 691894, 345947, 1037842, 518921, 1556764, 778382, 389191, 1167574, 583787, 1751362, 875681, 2627044, 1313522, 656761, 1970284, 985142, 492571, 1477714, 738857, 2216572, 1108286, 554143, 1662430, 831215, 2493646, 1246823
OFFSET
1,1
COMMENTS
The total stopping time of 230631 is 442. - Michael De Vlieger, Oct 15 2018
LINKS
Eric Weisstein's World of Mathematics, Collatz Problem
MATHEMATICA
Off[Set::"setraw"]; f[n_]:=If[EvenQ[n], n=n/2, n=n*3+1]; Do[a=q; lst={a}; Do[a=f[a]; AppendTo[lst, a]; If[a==1, Break[]], {n, 10!}]; If[Length[lst]>400, Print[lst, Length[lst]]], {q, 5*8!, 9!}]
NestList[If[EvenQ[#], #/2, 3#+1]&, 230631, 30] (* Harvey P. Dale, Jun 26 2011 *)
CROSSREFS
Sequence in context: A324636 A015319 A270515 * A357826 A050998 A237462
KEYWORD
nonn,fini,full,easy
AUTHOR
STATUS
approved