Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 30 2012 17:25:56
%S 0,1,1,4,2,2,1,7,2,4,1,10,5,1,12,5,13,2,7,1,16,11,17,2,1,19,2,10,1,22,
%T 11,1,24,7,25,10,1,27,11,28,14,2,1,31,21,32,16,1,34,17,14,1,37,25,38,
%U 19,1,40,20,1,42,17,43,2,1,45,13,46,31,47,2,1,49,14,25,1,52,26,2,1
%N a(n) = A179620(n)/A130882(n) unless A130882(n) = 0 in which case a(n) = 0.
%C a(n) is the "level" of composite numbers.
%C The decomposition of composite numbers into weight * level + gap is A002808(n) = A130882(n) * a(n) + A073783(n) if a(n) > 0.
%C A179620(n) = A002808(n) - A073783(n) if A002808(n) - A073783(n) > A073783(n), 0 otherwise.
%H Rémi Eismann, <a href="/A179621/b179621.txt">Table of n, a(n) for n = 1..10000</a>
%e For n = 1 we have A130882(1) = 0, hence a(1) = 0.
%e For n = 3 we have A179620(3)/A130882(3)= 7 / 7 = 1; hence a(3) = 1.
%e For n = 24 we have A179620(24)/A130882(24)= 34 / 17 = 2; hence a(24) = 2.
%Y Cf. A002808, A073783, A130882, A179620, A117078, A117563, A001223, A118534.
%K nonn
%O 1,4
%A _Rémi Eismann_, Jan 09 2011