login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 2*x - 9*x^2 - 2*x^3).
2

%I #15 Apr 07 2024 08:49:02

%S 1,3,15,59,259,1079,4607,19443,82507,349215,1479879,6267707,26552755,

%T 112474631,476459471,2018296131,8549676763,36216937647,153417558423,

%U 649886909195,2752965719491,11661748738583,49399962770975

%N Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 2*x - 9*x^2 - 2*x^3).

%C The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.

%C The sequence above corresponds to 4 red king vectors, i.e., A[5] vectors, with decimal [binary] values 327 [1,0,1,0,0,0,1,1,1], 333 [1,0,1,0,0,1,1,0,1], 357 [1,0,1,1,0,0,1,0,1] and 453 [1,1,1,0,0,0,1,0,1]. These vectors lead for the side squares to A015448 and for the central square to A179605.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,9,2).

%F G.f.: ( -1-x ) / ( (2*x+1)*(x^2 + 4*x - 1) ).

%F a(n) = 2*a(n-1) + 9*a(n-2) + 2*a(n-3) with a(0)=1, a(1)=3 and a(2)=15.

%F a(n) = (20*(-1/2)^(-n) + (5+7*sqrt(5))*A^(-n-1) + (5-7*sqrt(5))*B^(-n-1))/110 with A = (-2+sqrt(5)) and B:= (-2-sqrt(5)).

%F Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)/(A001076(n)*sqrt(5) - A001077(n)).

%p with(LinearAlgebra): nmax:=22; m:=1; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,0,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

%t LinearRecurrence[{2,9,2},{1,3,15},30] (* or *) CoefficientList[ Series[ (x+1)/(-2 x^3-9 x^2-2 x+1),{x,0,30}],x] (* _Harvey P. Dale_, Mar 17 2012 *)

%Y Cf. A001076, A001077, A015448, A179605, A179596.

%K easy,nonn

%O 0,2

%A _Johannes W. Meijer_, Jul 28 2010