login
Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 7*x^2).
3

%I #8 Nov 23 2018 16:27:31

%S 1,5,22,101,457,2078,9433,42845,194566,883613,4012801,18223694,

%T 82760689,375847925,1706868598,7751541269,35202703993,159868900862,

%U 726025630537,3297159197645,14973657006694,68001085403597,308818855257649

%N Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 3*x - 7*x^2).

%C The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.

%C The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 95, 119, 125, 215, 221, 245, 287, 311, 317, 347, 350, 371, 374, 377, 380, 407, 413, 437, 467, 470, 473, 476, 497 and 500. These vectors lead for the corner squares to A015524 and for the central square to A179603.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3, 7).

%F G.f.: (1+2*x)/(1 - 3*x - 7*x^2).

%F a(n) = 3*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 5.

%F a(n) = ((37+4*37^(1/2))*A^(-n-1) + (37-4*37^(1/2))*B^(-n-1))/259 with A = (-3+sqrt(37))/14 and B = (-3-sqrt(37))/14.

%p with(LinearAlgebra): nmax:=22; m:=2; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,1,1,0,1,0,0,1,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

%t CoefficientList[Series[(1+2x)/(1-3x-7x^2),{x,0,40}],x] (* or *) LinearRecurrence[ {3,7},{1,5},40] (* _Harvey P. Dale_, Mar 28 2013 *)

%Y Cf. A126473 (side squares).

%K easy,nonn

%O 0,2

%A _Johannes W. Meijer_, Jul 28 2010