login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=10; a(n) = a(n-1)*10 - 1.
1

%I #18 Mar 04 2024 01:14:34

%S 10,99,989,9889,98889,988889,9888889,98888889,988888889,9888888889,

%T 98888888889,988888888889,9888888888889,98888888888889,

%U 988888888888889,9888888888888889,98888888888888889,988888888888888889,9888888888888888889,98888888888888888889

%N a(1)=10; a(n) = a(n-1)*10 - 1.

%C For n -> oo, a(n)/10^n -> 0.9888......8889 = 89/90.

%H Colin Barker, <a href="/A179555/b179555.txt">Table of n, a(n) for n = 1..999</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).

%F From _Colin Barker_, Oct 03 2015: (Start)

%F a(n) = 11*a(n-1) - 10*a(n-2) for n>2.

%F G.f.: -x*(11*x-10) / ((x-1)*(10*x-1)).

%F (End)

%t a[1] := 10; a[n_] := a[n] = 10 a[n - 1] - 1; Array[a@ # &, {20}] (* _Michael De Vlieger_, Oct 03 2015 *)

%o (PARI) Vec(-x*(11*x-10)/((x-1)*(10*x-1)) + O(x^30)) \\ _Colin Barker_, Oct 03 2015

%K nonn,easy

%O 1,1

%A _Mark Dols_, Jul 19 2010

%E Name edited by _Colin Barker_, Oct 03 2015