

A179535


a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(nk,k)^2 * 81^k.


1



1, 1, 325, 2917, 247861, 5937301, 265793401, 10705726585, 378746444917, 18588932910901, 657940881863305, 32580334626782185, 1257522211980656425, 59212895251349313865, 2490039488311462939645, 112553667120196462181437
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

On Jul 17 2010, ZhiWei Sun introduced this sequence and made the following conjecture: If p is a prime with p=1,9,11,19 (mod 40) and p = x^2+10y^2 with x,y integers, then Sum_{k=0..p1} a(k) == 4x^22p (mod p^2); if p is a prime with p == 7,13,23,37 (mod 40) and 2p = x^2 + 10y^2 with x,y integers, then Sum_{k=0..p1} a(k) == 2p  2x^2 (mod p^2); if p is an odd prime with (10/p)=1, then Sum_{k=0..p1} a(k) == 0 (mod p^2). He also conjectured that Sum_{k=0..n1} (10k+9)*a(k) == 0 (mod n) for all n=1,2,3,... and that Sum_{k=0..p1} (10k+9)*a(k) == p(4(2/p)+5) (mod p^2) for any prime p > 3.


LINKS

Table of n, a(n) for n=0..15.
ZhiWei Sun, Open Conjectures on Congruences, preprint, arXiv:0911.5665 [math.NT], 20092011.
ZhiWei Sun, On Apery numbers and generalized central trinomial coefficients, preprint, arXiv:1006.2776 [math.NT], 20102011.


EXAMPLE

For n=2 we have a(2) = 1 + 2^2*81 = 325.


MATHEMATICA

a[n_]:=Sum[Binomial[n, k]^2Binomial[nk, k]^2*81^k, {k, 0, n}] Table[a[n], {n, 0, 25}]


CROSSREFS

Cf. A179524, A178790, A178791, A178808, A173774.
Sequence in context: A299708 A031714 A133447 * A145414 A298106 A266365
Adjacent sequences: A179532 A179533 A179534 * A179536 A179537 A179538


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Jul 18 2010


STATUS

approved



