login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/(1-x-2x^2))*c(x/(1-x-2x^2)), c(x) the g.f. of A000108.
0

%I #21 Nov 04 2022 10:46:53

%S 1,2,7,23,85,332,1369,5870,25945,117374,540805,2528675,11966923,

%T 57206972,275824159,1339721519,6549093013,32195473406,159065828029,

%U 789395034701,3933239089903,19668745466636,98679891233803,496570499905832,2505670304785615,12675395921692394,64270076976110203,326580624341708693,1662796531746045157,8481930651824392268,43341418581113085697

%N Expansion of (1/(1-x-2x^2))*c(x/(1-x-2x^2)), c(x) the g.f. of A000108.

%C Hankel transform is A168495(n+1).

%F G.f.: 1/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-x-2x^2-x/(1-x/(1-... (continued fraction);

%F a(n) = Sum_{k=0..n} A000108(k)*Sum_{j=0..n-k} C(k+j,k)*C(j,n-k-j)*2^(n-k-j).

%F a(n) = Sum_{k=0..n} A073370(n,k)*A000108(k).

%F D-finite with recurrence: (n+1)*a(n) +2*(1-3n)*a(n-1) +(n-1)*a(n-2) +4*(3n-5)*a(n-3) +4*(n-3)*a(n-4)= 0. - _R. J. Mathar_, Nov 17 2011

%p with(LREtools): with(FormalPowerSeries): # requires Maple 2022

%p ogf:= (1/(1-x-2*x^2))*(1 - sqrt(1 - 4*(x/(1-x-2*x^2)))) / (2*(x/(1-x-2*x^2))):

%p init:= [1, 2, 7, 23, 85, 332, 1369];

%p iseq:= seq(u(i-1)=init[i],i=1..nops(init)): req:= FindRE(ogf,x,u(n));

%p rmin:= subs(n=n-4,MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence

%p a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):

%p seq(a(n),n=0..30); # _Georg Fischer_, Nov 04 2022

%Y Cf. A000108, A073370, A168495.

%K nonn

%O 0,2

%A _Paul Barry_, Jan 08 2011