Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Nov 05 2017 11:51:44
%S 1,1,0,1,0,0,1,0,1,0,1,0,2,0,0,1,0,1,2,1,0,1,0,3,0,3,0,0,1,0,3,2,3,2,
%T 1,0,1,0,3,0,6,0,4,0,0,1,0,4,4,5,4,4,4,1,0,1,0,5,0,10,0,10,0,5,0,0,1,
%U 0,4,4,10,8,10,8,4,4,1,0
%N 'AP(n,k)' triangle read by rows. AP(n,k) is the number of aperiodic k-palindromes of n.
%C A k-composition of n is an ordered collection of k positive integers (parts) which sum to n.
%C A k-composition is aperiodic (primitive) if its period is k, or if it is not the concatenation of a smaller composition.
%C A k-palindrome of n is a k-composition of n which is a palindrome.
%C Let AP(n,k) denote the number of aperiodic k-palindromes of n.
%C This sequence is the 'AP(n,k)' triangle read by rows.
%C The g.f. of this triangular array follows easily from A. Howroyd's formula for this sequence and P. Deleham's g.f. for sequence A051159. If T(n,k) = A051159(n,k), then g.f. = Sum_{n,k>=1} AP(n,k)*x^n*y^k = Sum_{n,k>=1} Sum_{d|gcd(n,k)} mu(d)*T(n/d-1,k/d-1)*x^n*y^k. Letting m = n/d and s = k/d, we get g.f. = Sum_{d>=1} mu(d)*Sum_{m,s>=1} T(m-1,s-1)*(x^d)^m*(y^d)^s. But P. Deleham's formula for sequence A051159 implies Sum_{m,s>=1} T(m-1,s-1)*x^m*y^s = x*y*(1+x+x*y)/(1-x^2-x^2*y^2). Thus, Sum_{n,k>=1} AP(n,k)*x^n*y^k = Sum_{d>=1} mu(d)*f(x^d,y^d), where f(x,y) = x*y*(1+x+x*y)/(1-x^2-x^2*y^2). - _Petros Hadjicostas_, Nov 04 2017
%D John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
%H Andrew Howroyd, <a href="/A179519/b179519.txt">Table of n, a(n) for n = 1..1275</a>
%F T(n,k) = Sum_{d|gcd(n,k)} mu(d) * A051159(n/d-1, k/d-1). - _Andrew Howroyd_, Oct 07 2017
%F G.f.: Sum_{n>=1} mu(n)*f(x^n,y^n), where f(x,y) = x*y*(1+x+x*y)/(1-x^2-x^2*y^2). - _Petros Hadjicostas_, Nov 04 2017
%e The triangle begins
%e 1
%e 1,0
%e 1,0,0
%e 1,0,1,0
%e 1,0,2,0,0
%e 1,0,1,2,1,0
%e 1,0,3,0,3,0,0
%e 1,0,3,2,3,2,1,0
%e 1,0,3,0,6,0,4,0,0
%e 1,0,4,4,5,4,4,4,1,0
%e For example, row 8 is 1,0,3,2,3,2,1,0.
%e We have AP(8,3)=3 because there are 3 aperiodic 3-palindromes of 8, namely: 161, 242, and 323.
%e We have AP(8,4)=2 because there are 2 aperiodic 4-palindromes of 8, namely: 3113 and 1331.
%t T[n_, k_] := Sum[MoebiusMu[d]*QBinomial[n/d-1, k/d-1, -1], {d, Divisors[ GCD[n, k]]}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 30 2017, after _Andrew Howroyd_ *)
%o (PARI) \\ here p(n,k)=A051159(n-1,k-1) is number of k-palindromes of n.
%o p(n, k) = if(n%2==1&&k%2==0, 0, binomial((n-1)\2, (k-1)\2));
%o T(n, k) = sumdiv(gcd(n,k), d, moebius(d) * p(n/d, k/d));
%o for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ _Andrew Howroyd_, Oct 07 2017
%Y If we count the aperiodic k-palindromes of n up to cyclic equivalence, APE(n, k), we get sequence A179317.
%Y The row sums of this triangle give sequence A179781. - _John P. McSorley_, Jul 26 2010
%K nonn,tabl
%O 1,13
%A _John P. McSorley_, Jul 17 2010
%E Terms a(56) and beyond from _Andrew Howroyd_, Oct 07 2017