Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 08 2015 04:07:07
%S 8,55,76,377,430,499,655,804,1827,5350,10805,15433,22108,44729,44817,
%T 96001,747343,748635,952463,7626590,10741787,12798893,14957531,
%U 15873532
%N Values x for records of minima of positive distance d between a fifth power of positive integer x and a square of integer y such d = x^5 - y^2 (x != k^2 and y != k^5).
%C Distance d is equal to 0 when x = k^2 and y = k^5.
%C For d values, see A179406.
%C For y values, see A179408.
%C Conjecture (from _Artur Jasinski_):
%C For any positive number x >= A179407(n), the distance d between the fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).
%H J. Blass, <a href="http://dx.doi.org/10.1090/S0025-5718-1976-0401638-2">A Note on Diophantine Equation Y^2 + k = X^5</a>, Math. Comp. 1976, Vol. 30, No. 135, pp. 638-640.
%H A. Bremner, <a href="http://dx.doi.org/10.1080/10586458.2008.10129039">On the Equation Y^2 = X^5 + k</a>, Experimental Mathematics 2008 Vol. 17, No. 3, pp. 371-374.
%F a(n)^5-A179408(n)^2 = A179406(n).
%t max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (* _Artur Jasinski_, Jul 13 2010 *)
%Y Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179406, A179408.
%K nonn,uned
%O 1,1
%A _Artur Jasinski_, Jul 13 2010