|
|
A179401
|
|
Numbers k such that phi(phi(k)) = lambda(lambda(k)).
|
|
2
|
|
|
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 18, 19, 22, 23, 27, 38, 46, 47, 54, 59, 81, 83, 94, 107, 118, 162, 163, 166, 167, 179, 214, 227, 243, 251, 263, 326, 334, 347, 358, 359, 383, 454, 467, 479, 486, 487, 502, 503, 526, 563, 587, 694, 718, 719, 729, 766, 839, 863, 887, 934, 958
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
1283 is in the sequence because phi(phi(1283)) = lambda(lambda(1283)) = 640.
|
|
MAPLE
|
with(numtheory): for n from 1 to 1500 do: x:=phi(n):y:=lambda(n):if phi(x)=lambda(y)
then printf(`%d, `, n):else fi:od:
|
|
MATHEMATICA
|
Select[Range[1000], EulerPhi[EulerPhi[#]] == CarmichaelLambda[CarmichaelLambda[#]] &] (* Amiram Eldar, Aug 19 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|