OFFSET
1,4
COMMENTS
multiplied by the compositorial weight A048996(n,k) of the k-th partition (Abramowitz-Stegun order)
of n = sum_i a_i.
Summing also over the partitions with a common number of parts would create A127743.
In row n=4, for example, the partitions 3+1 and 2+2, each with 2 parts, are represented by
T(4,2)=4 and T(4,3)= 1 here, and the sum 4+1=5 of the entries is the single entry A127743(4,.).
In this sense, the table is a refinement of A127743.
REFERENCES
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, p. 831
EXAMPLE
by the weight A048996([2,4]) = 2!/1!/1! =2, and T(6,3) =1*6*2=12.
T(6,5) represents the 5th partition of 6, namely 1+1+4. A074664(1)*A074664(1)*A074664(4) = 1*1*6 is multiplied
by the weight A048996([1,1,4]) = 3!/2!/1! =3, and T(6,5) =1*1*6*3.
T(7,6) represents the 6th partition of 7, namely 1+2+4. A074664(1)*A074664(2)*A074664(4) = 1*1*6 is multiplied
the weight A048996([1,2,4]) = 3!/1!/1!/1! =6, and T(7,6) =1*1*6*6.
The triangle starts
1;
1,1;
2,2,1;
6,4,1,3,1;
22,12,4,6,3,4,1;
92,44,12,4,18,12,1,8,6,5,1;
426,184,44,24,66,36,12,6,24,24,4,10,10,6,1;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alford Arnold, Jul 11 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 16 2010
STATUS
approved