Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 13 2021 01:09:40
%S 28656,39602,43783,45380,45990,46223,46312,46346,46359,46364,46366,
%T 46367,57313,61494,63091,63701,63934,64023,64057,64070,64075,64077,
%U 64078,68259,69856,70466,70699,70788,70822,70835,70840,70842,70843
%N Numbers that have 11 terms in their Zeckendorf representation.
%C A007895(a(n)) = 11. - _Reinhard Zumkeller_, Mar 10 2013
%H Reinhard Zumkeller, <a href="/A179251/b179251.txt">Table of n, a(n) for n = 1..10000</a>
%e 28656=17711+6765+2584+987+377+144+55+21+8+3+1;
%e 39602=28657+6765+2584+987+377+144+55+21+8+3+1;
%p with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(23)-1 to 73000 do if B(i) = 11 then Q := `union`(Q, {i}) else end if end do: Q;
%t Select[Range[6*10^6], BitAnd[#, 2*#] == 0&] // DigitCount[#, 2, 1]& // Position[#, 11]& // Flatten (* _Jean-François Alcover_, Feb 15 2018 *)
%o (Haskell)
%o a179251 n = a179251_list !! (n-1)
%o a179251_list = filter ((== 11) . a007895) [1..]
%o -- _Reinhard Zumkeller_, Mar 10 2013
%Y Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179248, A179249, A179250, A179252, A179253.
%K nonn
%O 1,1
%A _Emeric Deutsch_, Jul 05 2010