%I #15 Feb 13 2021 01:09:33
%S 4180,5777,6387,6620,6709,6743,6756,6761,6763,6764,8361,8971,9204,
%T 9293,9327,9340,9345,9347,9348,9958,10191,10280,10314,10327,10332,
%U 10334,10335,10568,10657,10691,10704,10709,10711,10712,10801,10835,10848
%N Numbers that have 9 terms in their Zeckendorf representation.
%C A007895(a(n)) = 9. - _Reinhard Zumkeller_, Mar 10 2013
%H Reinhard Zumkeller, <a href="/A179249/b179249.txt">Table of n, a(n) for n = 1..10000</a>
%e 4180 = 2584 +987+377+144+55+21+8+3+1;
%e 5777 = 4181 +987+377+144+55+21+8+3+1;
%e 6387 = 4181+1597+377+144+55+21+8+3+1;
%e 6620 = 4181+1597+610+144+55+21+8+3+1;
%e 6709 = 4181+1597+610+233+55+21+8+3+1.
%p with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(19)-1 to 10900 do if B(i) = 9 then Q := `union`(Q, {i}) else end if end do: Q;
%t zeck = DigitCount[Select[Range[4*10^5], BitAnd[#, 2*#] == 0 &], 2, 1];
%t Position[zeck, 9] // Flatten (* _Jean-François Alcover_, Jan 30 2018 *)
%o (Haskell)
%o a179249 n = a179249_list !! (n-1)
%o a179249_list = filter ((== 9) . a007895) [1..]
%o -- _Reinhard Zumkeller_, Mar 10 2013
%Y Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179248, A179250, A179251, A179252, A179253.
%K nonn
%O 1,1
%A _Emeric Deutsch_, Jul 05 2010