login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Rank transform of the sequence floor(n*sqrt(2)); complement of A186543.
2

%I #14 Feb 10 2014 21:30:29

%S 1,3,5,6,9,10,11,14,16,17,19,20,23,24,27,28,30,32,33,35,37,39,40,42,

%T 44,46,48,49,52,53,55,57,58,60,62,64,65,67,69,71,72,75,76,78,80,82,84,

%U 85,87,89,91,93,94,96,98,100,101,103,105,106,109,110,112,114,115,117,119,121,123,124,126,128,130,132,134,136,137,139,141

%N Rank transform of the sequence floor(n*sqrt(2)); complement of A186543.

%C See A187224.

%t m = 2^(1/2);

%t seqA = Table[Floor[m*n], {n, 1, 180}] (* A001951 *)

%t seqB = Table[n, {n, 1, 80}]; (* A000027 *)

%t jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,{#1, 2} & /@ seqB}, 1]];

%t limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (* A179185 *)

%t Complement[Range[Length[seqA]], limseqU] (* A186543 *)

%t (* by _Peter J. C. Moses_, Mar 09 2011 *)

%Y Cf. A187224, A186543.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 07 2011