login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A007895.
3

%I #15 Dec 09 2021 08:37:17

%S 0,1,2,3,5,6,8,10,11,13,15,17,20,21,23,25,27,30,32,35,38,39,41,43,45,

%T 48,50,53,56,58,61,64,67,71,72,74,76,78,81,83,86,89,91,94,97,100,104,

%U 106,109,112,115,119,122,126,130,131,133,135,137,140,142,145

%N Partial sums of A007895.

%C Total number of summands in Zeckendorf representations of all the numbers 1,2,...,n (for n>0); see the conjecture at A214979. - _Clark Kimberling_, Oct 23 2012

%H Clark Kimberling, <a href="/A179180/b179180.txt">Table of n, a(n) for n = 0..10000</a>

%H Christian Ballot, <a href="https://www.fq.math.ca/Papers1/51-4/BallotZeckendorfBase.pdf">On Zeckendorf and Base b Digit Sums</a>, Fibonacci Quarterly, Vol. 51, No. 4 (2013), pp. 319-325.

%H Vaclav Kotesovec, <a href="/A179180/a179180.jpg">Graph - the asymptotic ratio</a>

%F a(n) ~ c * n * log(n), where c = (phi-1)/(sqrt(5)*log(phi)) = 0.574369... and phi is the golden ratio (A001622) (Ballot, 2013). - _Amiram Eldar_, Dec 09 2021

%e For n = 6, a(n) = 1+1+1+2+1+2 = 8.

%t s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];

%t t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]]; v[n_] := Sum[t2[[k]], {k, 1, n}];

%t v1 = Table[v[n], {n, 1, z}]

%t (* _Peter J. C. Moses_, Oct 18 2012 *)

%t DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1] // Accumulate (* _Jean-François Alcover_, Jan 25 2018 *)

%Y Cf. A001622, A007895, A214979.

%K nonn

%O 0,3

%A _Walt Rorie-Baety_, Jun 30 2010

%E Corrected term a(17); the working list of the terms were not in order. _Walt Rorie-Baety_, Jun 30 2010

%E Extended by _Clark Kimberling_, Oct 23 2012