login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179149
Numbers k such that Mordell's equation y^2 = x^3 + k has exactly 5 integral solutions.
8
1, 64, 729, 1000, 2744, 4096, 15625, 21952, 35937, 46656, 50653, 64000, 117649, 262144, 343000, 531441, 592704, 681472, 729000, 753571, 1000000, 1124864, 1771561, 2000376, 2197000, 2299968, 2744000, 2985984, 3652264, 4096000, 4826809, 5451776, 6229504, 7189057, 7529536
OFFSET
1,2
COMMENTS
Contains all sixth powers: suppose that y^2 = x^3 + t^6, then (y/t^3)^2 = (x/t^2)^3 + 1. The elliptic curve Y^2 = X^3 + 1 has rank 0 and the only rational points on it are (-1,0), (0,+-1), and (2,+-3), so y^2 = x^3 + t^6 has 5 solutions (-t^2,0), (0,+-t^3), and (2*t^2,+-3*t^3). - Jianing Song, Aug 24 2022
LINKS
J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
FORMULA
a(n) = A356711(n)^3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jun 30 2010
EXTENSIONS
Edited and extended by Ray Chandler, Jul 11 2010
a(31)-a(35) from Max Alekseyev, Jun 01 2023
STATUS
approved