login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179116
G.f.: A(x) = exp( Sum_{n>=1} 2*A179117(n)*x^n/n ), where A179117(n) = Sum_{d|n} phi(d^phi(d)).
1
1, 2, 4, 10, 21, 236, 470, 29736, 60343, 199550, 476302, 4288159410, 8582063896, 3325768085554, 6660540885640, 13325577492746, 34102614679799, 5388161956623254232, 10777089239865231074, 10405445064118373530596
OFFSET
0,2
COMMENTS
phi(n) = A000010(n) is the Euler totient function of n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 21*x^4 + 236*x^5 + 470*x^6 +...
log(A(x)) = 2*x + 4*x^2/2 + 14*x^3/3 + 20*x^4/4 + 1002*x^5/5 + 40*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sumdiv(m, d, 2*eulerphi(d^eulerphi(d)))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A179117, A000010 (phi).
Sequence in context: A123445 A104431 A130666 * A358357 A036954 A109679
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 10 2010
STATUS
approved