login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectified 7-simplex number: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^8.
5

%I #17 Aug 03 2022 07:35:11

%S 0,1,28,266,1428,5475,16808,44052,102552,217701,429220,796510,1405196,

%T 2374983,3868944,6104360,9365232,14016585,20520684,29455282,41534020,

%U 57629099,78796344,106302780,141656840,186641325,243349236,314222598

%N Rectified 7-simplex number: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^8.

%H J. Conrad, <a href="/A179098/b179098.txt">Table of n, a(n) for n = 0..34</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F Conjectures: a(n) = n*(90+77*n+140*n^3+210*n^4+98*n^5+15*n^6)/630. G.f.: x*(1+20*x+70*x^2+28*x^3+x^4)/(1-x)^8. - _Colin Barker_, Jan 09 2012

%F These conjectures are true, see A179095 for proof.

%t f[n_] := CoefficientList[ Series[ Sum[ x^k, {k, 0, n - 1}]^8, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* _Robert G. Wilson v_, Jul 30 2010 *)

%o (PARI) a(n) = polcoeff(((x^n-1)/(x-1))^8, 2*n-2); \\ _Michel Marcus_, Feb 17 2016

%Y Cf. A179095, A179096, A179097, A179099.

%K nonn

%O 0,3

%A _Michael A. Jackson_, Jun 29 2010

%E More terms from _Robert G. Wilson v_, Jul 30 2010