%I #15 May 04 2019 23:07:00
%S 1,1,1,-3,14,-3,-11,35,35,-11,-7,-84,566,-84,-7,41,-843,2722,2722,
%T -843,41,117,-2854,763,50028,763,-2854,117,29,-4681,-80211,407423,
%U 407423,-80211,-4681,29,-527,4504,-720740,1560616,8634214,1560616,-720740,4504,-527,-1199,68393,-4275340,-6925948,104031374,104031374,-6925948,-4275340,68393,-1199,237,338918,-19903639,-195090616,799237802,2546725796,799237802,-195090616
%N Triangle T(n,k) read by rows: the real part of the coefficient [x^k] of (1-x)^(n+1) * Sum_{s>=0} ((2*s + 1 + 2*i)^n)*x^s, where i is the imaginary unit.
%e Triangle begins
%e 1;
%e 1, 1;
%e -3, 14, -3;
%e -11, 35, 35, -11;
%e -7, -84, 566, -84, -7;
%e 41, -843, 2722, 2722, -843, 41;
%e 117, -2854, 763, 50028, 763, -2854, 117;
%e 29, -4681, -80211, 407423, 407423, -80211, -4681, 29;
%p A179087 := proc(n,k)
%p (1-x)^(n+1)*add( (2*s+1+2*I)^n*x^s,s=0..k) ;
%p expand(%) ;
%p coeftayl(%,x=0,k) ;
%p Re(%) ;
%p end proc: # _R. J. Mathar_, Oct 06 2011
%Y Cf. A000165 (row sums), A006495 (column k=0).
%K sign,tabl
%O 0,4
%A _Roger L. Bagula_, Jun 28 2010
%E Sequence replaced with one that is more likely to occur in practice by _R. J. Mathar_, Oct 06 2011