Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 May 08 2024 14:51:02
%S -1,-2,0,0,-32,256,0,0,-8192,0,-262144,5242880,0,0,-33554432,0,
%T -2684354560,0,0,8589934592000,0,0,932385860354048,160159261748363264,
%U -1125899906842624,0,0,-225179981368524800,5260204364768739328,0,0
%N Chapman's "evil" determinants II.
%C Determinant of the k-by-k matrix with (i,j)-entry L((i+j)/p), where L(./p) denotes the Legendre symbol modulo p and p = p_n = 2k+1 is the n-th prime.
%C Guy says "Chapman has a number of conjectures which concern the distribution of quadratic residues." One is that if 3 < p_n == 3 (mod 4), then a(n) = 0.
%C It appears that a(n) is even, if p_n == 1 (mod 4).
%C For any odd prime p, (p+1)/2-i+(p+1)/2-j == -(i+j-1) (mod p) and hence we have L(-1/p)*|L((i+j)/p)|_{i,j=1,...,(p-1)/2} = |L((i+j-1)/p)|_{i,j=1,...,(p-1)/2}. Thus the value of a(n) was actually determined in the first reference of R. Chapman. - _Zhi-Wei Sun_, Aug 21 2013
%D Richard Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, Section F5.
%H Robin Chapman, <a href="http://dx.doi.org/10.4064/aa115-3-4">Determinants of Legendre symbol matrices</a>, Acta Arith. 115 (2004), 231-244.
%H Robin Chapman, <a href="http://dx.doi.org/10.1016/j.ejc.2003.02.001">Steinitz classes of unimodular lattices</a>, European J. Combin. 25 (2004), 487-493.
%H Robin Chapman (2009), <a href="http://secamlocal.ex.ac.uk/people/staff/rjchapma/etc/evildet.pdf">My evil determinant problem</a>
%H Maxim Vsemirnov (2011), <a href="http://arxiv.org/abs/1108.4031">On R. Chapman's ``evil determinant'': case p=1 (mod 4)</a>, arXiv:1108.4031 [math.NT], 2011-2012.
%H M. Vseminov, <a href="http://dx.doi.org/10.1016/j.laa.2011.08.039">On the evaluation of R. Chapman's "evil determinant"</a>, Linear Algebra Appl. 436(2012), 4101-4106.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Legendre_symbol">Legendre symbol</a>
%e p_4 = 7 = 2*3 + 1 and the 3 X 3 matrix (L((i+j)/7)) is
%e 1, -1, 1
%e -1, 1, -1
%e 1, -1, -1
%e which has determinant 0, so a(4) = 0.
%t a[n_] := Module[{p, k}, p = Prime[n]; k = (p-1)/2; Det @ Table[JacobiSymbol[ i + j, p], {i, 1, k}, {j, 1, k}]];
%t Table[a[n], {n, 2, 32}] (* _Jean-François Alcover_, Nov 18 2018 *)
%Y Cf. A179071 (Chapman's "evil" determinants I), A179073 (A179071 for p == 1 (mod 4)), A179074 (A179072 for p == 1 (mod 4)).
%K sign
%O 2,2
%A _Jonathan Sondow_ and _Wadim Zudilin_, Jun 29 2010