|
|
A179056
|
|
Numbers k such that prime(1)^1 + prime(2)^2 + ... + prime(k)^k is prime.
|
|
0
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The number corresponding to k=6402 is a probable prime. There is no further term up to 9435.
There is no further term up to 12600. - Michael S. Branicky, Mar 22 2023
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
EXAMPLE
|
prime(1)^1 + prime(2)^2 + ... + prime(8)^8 = 17398892111 is prime, so 8 is in the sequence.
|
|
MATHEMATICA
|
Select[Range[1, 100], PrimeQ[Sum[Prime[i]^i, {i, 1, #}]] &] (* Julien Kluge, Dec 03 2016 *)
|
|
CROSSREFS
|
Cf. A087480.
Sequence in context: A324567 A135238 A133376 * A160814 A038582 A309860
Adjacent sequences: A179053 A179054 A179055 * A179057 A179058 A179059
|
|
KEYWORD
|
hard,more,nonn,changed
|
|
AUTHOR
|
Farideh Firoozbakht, Jun 27 2010
|
|
STATUS
|
approved
|
|
|
|