%I #11 Oct 12 2023 16:44:19
%S 3,13,31,43,83,103,113,131,139,163,193,311,349,389,431,439,443,463,
%T 613,631,643,683,839,863,883,983,1013,1031,1039,1063,1093,1103,1163,
%U 1193,1301,1319,1361,1381,1399,1439,1483,1493,1613,1663,1693,1831,1913,1931
%N Primes with a 3 as the only prime digit.
%C The digit 3 must appear only once. - _Harvey P. Dale_, Oct 12 2023
%H Robert Israel, <a href="/A179027/b179027.txt">Table of n, a(n) for n = 1..10000</a>
%p filter:= proc(n) local L,t;
%p L:= convert(n,base,10);
%p numboccur(3,L) = 1 and convert(L,set) intersect {2,5,7} = {}
%p end proc:
%p select(filter, [seq(ithprime(i),i=1..1000)]); # _Robert Israel_, Apr 21 2021
%t Select[Prime[Range[300]],DigitCount[#,10,3]==1&&DigitCount[#,10,2]== DigitCount[#,10,5]== DigitCount[#,10,7]==0&] (* _Harvey P. Dale_, Oct 12 2023 *)
%o (Python)
%o from sympy import sieve
%o def ok(p): s=str(p); return set(s)&set("2357")=={'3'} and s.count('3')==1
%o def aupto(limit): return [p for p in sieve.primerange(1, limit+1) if ok(p)]
%o print(aupto(1931)) # _Michael S. Branicky_, Apr 21 2021
%Y Cf. A179026.
%K nonn,base
%O 1,1
%A _Lekraj Beedassy_, Jun 25 2010
%E Corrected by _Ray Chandler_, Jul 13 2010