login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).
8

%I #63 Mar 23 2020 17:31:43

%S 1,1,1,1,3,9,19,99,477,1513,11259,74601,315523,3052323,25740261,

%T 136085041,1620265923,16591655817,105261234643,1488257158851,

%U 17929265150637,132705221399353,2172534146099019,30098784753112329,254604707462013571,4736552519729393091,74180579084559895221,705927677520644167681,14708695606607601165843,256937013876000351610089,2716778010767155313771539

%N E.g.f.: (3+2*sqrt(3)*exp(x/2)*sin(sqrt(3)*x/2))/(exp(-x)+2*exp(x/2)*cos(sqrt(3)*x/2)).

%C According to Mendes and Remmel, p. 56, this is the e.g.f. for 3-alternating permutations.

%H Alois P. Heinz, <a href="/A178963/b178963.txt">Table of n, a(n) for n = 0..500</a>

%H J. M. Luck, <a href="http://arxiv.org/abs/1309.7764">On the frequencies of patterns of rises and falls</a>, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013-2014.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>.

%H Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from <a href="http://math.ucsd.edu/~remmel/">Jeffrey Remmel's home page</a>.

%H Ludwig Seidel, <a href="https://babel.hathitrust.org/cgi/pt?id=hvd.32044092897461&amp;view=1up&amp;seq=176">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the <a href="https://www.hathitrust.org/accessibility">HATHI TRUST Digital Library</a>]

%H Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>]

%F a(3*n) = A002115(n). - _Peter Luschny_, Aug 02 2012

%p A178963_list := proc(dim) local E,DIM,n,k;

%p DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;

%p for n from 1 to DIM do

%p if n mod 3 = 0 then E[n,0] := 0 ;

%p for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;

%p else E[0,n] := 0;

%p for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;

%p fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:

%p A178963_list(30); # _Peter Luschny_, Apr 02 2012

%p # Alternatively, using a bivariate exponential generating function:

%p A178963 := proc(n) local g, p, q;

%p g := (x,z) -> 3*exp(x*z)/(exp(z)+2*exp(-z/2)*cos(z*sqrt(3)/2));

%p p := (n,x) -> n!*coeff(series(g(x,z),z,n+2),z,n);

%p q := (n,m) -> if modp(n,m) = 0 then 0 else 1 fi:

%p (-1)^floor(n/3)*p(n,q(n,3)) end:

%p seq(A178963(i),i=0..30); # _Peter Luschny_, Jun 06 2012

%p # third Maple program:

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),

%p add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))

%p end:

%p a:= n-> b(n, 0, 0):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Oct 29 2014

%t max = 30; f[x_] := (E^x*(2*Sqrt[3]*E^(x/2)*Sin[(Sqrt[3]*x)/2] + 3))/(2*E^((3*x)/2)*Cos[(Sqrt[3]*x)/2] + 1); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! // Simplify (* _Jean-François Alcover_, Sep 16 2013 *)

%o (Sage) # uses[A from A181936]

%o A178963 = lambda n: (-1)^int(is_odd(n//3))*A(3,n)

%o print([A178963(n) for n in (0..30)]) # _Peter Luschny_, Jan 24 2017

%Y Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), A181936 (m=5).

%Y Cf. A181937, A002115.

%Y Cf. A249402, A249583 (alternative definitions of 3-alternating permutations).

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Dec 31 2010