login
A178769
a(n) = (5*10^n + 13)/9.
3
2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
OFFSET
0,1
FORMULA
a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024
MATHEMATICA
CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
LinearRecurrence[{11, -10}, {2, 7}, 20] (* Harvey P. Dale, Feb 28 2017 *)
PROG
(Magma) [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
(PARI) vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
(Sage) [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
(GAP) List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
CROSSREFS
Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.
Sequence in context: A034935 A337833 A294948 * A121079 A270395 A105183
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 13 2010
STATUS
approved