login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 17*a(n-1) + a(n-2), with a(-1) = 0 and a(0) = 1.
15

%I #59 May 01 2023 10:01:18

%S 0,1,17,290,4947,84389,1439560,24556909,418907013,7145976130,

%T 121900501223,2079454496921,35472626948880,605114112627881,

%U 10322412541622857,176086127320216450,3003786576985302507,51240457936070359069,874091571490181406680,14910797173269154272629

%N a(n) = 17*a(n-1) + a(n-2), with a(-1) = 0 and a(0) = 1.

%C The numerators and the denominators of continued fraction convergents to (17+sqrt(293))/2 lead to the sequence given above.

%C For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jul 08 2011

%C For n>=0, a(n) equals the number of words of length n on alphabet {0,1,...,17} avoiding runs of zeros of odd lengths. - _Milan Janjic_, Jan 28 2015

%C From _Michael A. Allen_, May 01 2023: (Start)

%C Also called the 17-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.

%C a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 17 kinds of squares available. (End)

%H G. C. Greubel, <a href="/A178765/b178765.txt">Table of n, a(n) for n = -1..800</a>

%H Michael A. Allen and Kenneth Edwards, <a href="https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.

%H Dale Gerdemann, <a href="https://www.youtube.com/watch?v=dfsR7wk-wVM">Fractal images from (17,1) recursion</a>, YouTube Video, Nov 08 2014

%H Dale Gerdemann, <a href="https://www.youtube.com/watch?v=DXJViUA7pu4">Fractal images from (17,1) recursion: Selected image in detail</a>, YouTube Video, Nov 08 2014

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,1).

%F a(n) = 17*a(n-1) + a(n-2) with a(-1) = 0, a(0) = 1.

%F G.f.: 1/(1 - 17*x - x^2).

%F E.g.f.: exp(17*x/2)*sinh(sqrt(293)*x/2)/(sqrt(293)/2).

%F a(n) = ( (17+sqrt(17^2+4))^(n+1) - (17-sqrt(17^2+4))^(n+1) )/(2^(n+1)*sqrt(17^2+4)).

%F a(n) = (Sum_{i=0..floor(n/2)} binomial(n+1,2*i+1)*17^(n-2*i)*293^i)/2^n.

%F a(n) = Fibonacci(n+1,17), the (n+1)-th Fibonacci polynomial evaluated at x=17.

%F a(n) = U(n, 17*i/2)*(-i)^n with i^2=(-1) and U(n, x/2)=S(n, x), see A049310.

%F a(n-r-1)*a(n+r-1) - a(n-1)^2 + (-1)^(n-r)*a(r-1)^2 = 0; a(-1) = 0 and n >= r+1.

%F a(n-1) + a(n+1) = A090306(n+1); A090306(n)^2 - 293*a(n-1)^2 - 4*(-1)^n = 0.

%F a(p-1) == 293^((p-1)/2)) (mod p) for odd primes p.

%F a(2n+1) = 17*A098248(n) (S(n,291)), a(2n) = A098250(n) (first differences of S(n,291)).

%F a(3n) = A041551(5n), a(3n+1) = A041551(5n+3), a(3n+2) = 2*A041551(5n+4).

%F Limit_{k -> oo}(a(n+k)/a(k)) = (A090306(n) + a(n)*sqrt(293))/2.

%F Limit_{n -> oo)(A090306(n)/a(n)) = sqrt(293).

%e a(2) = 17*a(1) + a(0) = 289 + 1 = 290.

%p A178765:=proc(n): if n=0 then 1 elif n=1 then 17 elif n>=2 then 17*procname(n-1)+procname(n-2) fi: end: seq(A178765(n), n=0..15);

%t Join[{a=0,b=1},Table[c=17*b+1*a;a=b;b=c,{n,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 16 2011 *)

%t Join[{0}, LinearRecurrence[{17,1},{1,17},30]] (* _Harvey P. Dale_, Jan 29 2014 *)

%t CoefficientList[Series[x/(1-17x-x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Nov 08 2014 *)

%o (Magma) [n le 2 select (n-1) else 17*Self(n-1)+Self(n-2): n in [1..25]]; // _Vincenzo Librandi_, Nov 08 2014

%o (PARI) my(x='x+O('x^30)); concat([0], Vec(1/(1-17*x-x^2))) \\ _G. C. Greubel_, Jan 24 2019

%o (Sage) (x/(1-17*x-x^2)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 24 2019

%o (GAP) a:=[1,17];; for n in [3..30] do a[n]:=17*a[n-1]+a[n-2]; od; Concatenation([0], a); # _G. C. Greubel_, Jan 24 2019

%Y Cf. A000045 (k=1), A006190 (k=3), A052918 (k=5), A054413 (k=7), A099371 (k=9), A049666 (k=11), A140455 (k=13), A154597 (k=15), this sequence (k=17).

%Y Cf. A086902, A087130.

%Y Cf. A243399.

%Y Row n=17 of A073133, A172236 and A352361 and column k=17 of A157103.

%K nonn,easy

%O -1,3

%A _Johannes W. Meijer_, Jun 12 2010, Jul 09 2011

%E Changed name from defining a(1)=17. - _Jon Perry_, Nov 08 2014

%E More terms from _Vincenzo Librandi_, Nov 08 2014