login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Degree of denominator of GF for number of ways to place k nonattacking queens on an n X n board.
4

%I #11 Oct 01 2021 17:11:01

%S 3,5,9,17,37,81,197,477,1197,3077,7989,20649,53885,140601,366917,

%T 959685,2511477,6571681,17202449,45027677,117871345,308581637,

%U 807852685,2114904397,5536838045,14495554593,37949503089,99352690141,260108204933

%N Degree of denominator of GF for number of ways to place k nonattacking queens on an n X n board.

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013

%F Explicit formula (Vaclav Kotesovec, May 31 2010), for k>1 : d(k) = 2*k+1+Sum[Sum[2*j*EulerPhi[i],{i,Fibonacci[k-j]+1,Fibonacci[k-j+1]}],{j,1,k-1}].

%F Asymptotic formula: d(k) ~ 6/(5*Pi^2)*((1+Sqrt[5])/2)^(2*k+1) or d(k) ~ 3*(1+Sqrt[5])/Pi^2*Fibonacci[k]^2.

%t Table[2*k + 1 + Sum[Sum[2*j*EulerPhi[i], {i, Fibonacci[k - j] + 1, Fibonacci[k - j + 1]}], {j, 1, k - 1}], {k, 1, 20}]

%Y Cf. A036464, A047659, A061994, A108792, A176186, A000010, A000045.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Jun 07 2010