login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178690
Expansion of (exp(3*x)-1)*(exp(2*x)-1)*(exp(x)-1).
1
0, 0, 0, 36, 432, 3660, 27000, 185556, 1223712, 7862940, 49653000, 309776676, 1915868592, 11772890220, 71992229400, 438593697396, 2664227115072, 16146540253500, 97676540188200, 590011376299716, 3559691497843152, 21455715437760780, 129219925869401400
OFFSET
0,4
COMMENTS
a(n) is the number of 3 X n matrices with the following properties:
i) Each row has at least one nonzero entry.
ii) Each column has exactly one nonzero entry.
iii) The nonzero entries in row m, 1 <= m <= 3, are in {1,2,...,m}.
This sequence counts such 3 X n matrices but the results are easily generalized for any such m X n matrix.
FORMULA
E.g.f.: (exp(3*x)-1)*(exp(2*x)-1)*(exp(x)-1).
G.f.: 12*x^3*(3-18*x+20*x^2)/((1-x)*(1-2*x)*(1-4*x)*(1-5*x)*(1-6*x)). - Colin Barker, Nov 30 2014
For n > 0, a(n) = 1 + 2^n - 4^n - 5^n + 6^n. - Vaclav Kotesovec, Dec 01 2014
a(n) = 18*a(n-1) - 121*a(n-2) + 372*a(n-3) - 508*a(n-4) + 240*a(n-5). - Vaclav Kotesovec, Dec 01 2014
MATHEMATICA
a=Exp[x]-1; b=Exp[2x]-1; c=Exp[3x]-1; Range[0, 20]! CoefficientList[Series[a b c, {x, 0, 20}], x]
PROG
(PARI) concat([0, 0, 0], Vec(-12*x^3*(20*x^2-18*x+3)/((x-1)*(2*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^30))) \\ Colin Barker, Dec 01 2014
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(3*x)-1)*(Exp(2*x)-1)*(Exp(x)-1) )); [0, 0, 0] cat [Factorial(n+2)*b[n]: n in [1..m-3]]; // G. C. Greubel, Jan 26 2019
(Sage) m = 30; T = taylor((exp(3*x)-1)*(exp(2*x)-1)*(exp(x)-1), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jan 26 2019
CROSSREFS
Cf. A083321, which is essentially the case for m=2.
Sequence in context: A179099 A181685 A183353 * A370225 A222781 A281403
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Dec 25 2010
STATUS
approved