login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178685
G.f.: A(x) = x/Series_Reversion(G(x)) where x*A(G(x)) = G(x) is the g.f. of A000699.
2
1, 1, 3, 17, 143, 1569, 20911, 324673, 5720319, 112365569, 2430174335, 57327084033, 1464259637503, 40255921184257, 1185312426797823, 37219582236845057, 1241715255479353343, 43867539372405948417, 1636223622007966705663, 64261630682976366944257
OFFSET
0,3
COMMENTS
The limit of (a(n+1)/a(n))/n = 2. - Paul D. Hanna, Aug 08 2014
The g.f. of related sequence A000699, where A000699(n) is the number of irreducible diagrams with 2n nodes, satisfies: G(x) = x + x^2*[d/dx G(x)^2/x].
LINKS
FORMULA
G.f. satisfies:
(1) [x^(n+1)] A(x)^(n+2) = 2(n+1)*[x^n] A(x)^(n+2).
(2) A(x) = 1 + x*A(x) * (A(x) + x*A'(x)) / (A(x) - x*A'(x)). - Paul D. Hanna, Aug 08 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 143*x^4 + 1569*x^5 + 20911*x^6 +...
A(x) satisfies: A(G(x)) = G(x)/x where G(x) is the g.f. of A000699:
G(x) = x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 + 38232*x^7 +...
which in turn satisfies: G(x) = x + x^2*[d/dx G(x)^2/x].
...
The table of coefficients in the initial powers of g.f. A(x) begins:
A^1: [1, 1, 3, 17, 143, 1569, 20911, 324673, 5720319, ...];
A^2: [1, 2, 7, 40, 329, 3526, 46107, 705444, 12289245, ...];
A^3: [1, 3, 12, 70, 567, 5949, 76350, 1150920, 19818801, ...];
A^4: [1, 4, 18, 108, 867, 8928, 112524, 1671000, 28436085, ...];
A^5: [1, 5, 25, 155, 1240, 12566, 155650, 2277050, 38285275, ...];
A^6: [1, 6, 33, 212, 1698, 16980, 206902, 2982096, 49529871, ...];
A^7: [1, 7, 42, 280, 2254, 22302, 267624, 3801036, 62355195, ...];
A^8: [1, 8, 52, 360, 2922, 28680, 339348, 4750872, 76971171, ...];
...
In the above table, notice that the main diagonal:
[1, 2, 12, 108, 1240, 16980, 267624, 4750872, 93615408, ...]
is related to the secondary diagonal in the following way:
[2*1, 4*3, 6*18, 8*155, 10*1698, 12*22302, 14*339348, 16*5850963, ...].
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A]=(2*(#A-1)*Vec(Ser(A)^(#A))[#A-1]-Vec(Ser(A)^(#A))[#A])/(#A)); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A*(A + x*A')/(A - x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A000699.
Sequence in context: A001865 A189001 A087885 * A361767 A268254 A333331
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2010
STATUS
approved