login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = product of nonsquarefree divisors of n.
2

%I #21 Jul 06 2022 06:57:43

%S 1,1,1,4,1,1,1,32,9,1,1,48,1,1,1,512,1,162,1,80,1,1,1,9216,25,1,243,

%T 112,1,1,1,16384,1,1,1,279936,1,1,1,25600,1,1,1,176,405,1,1,7077888,

%U 49,1250,1,208

%N a(n) = product of nonsquarefree divisors of n.

%H Reinhard Zumkeller, <a href="/A178649/b178649.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A007955(n) / A078599(n) = A007955(n) / A007955(A007947(n)).

%F a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^(1/2*k*(k+1)-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

%e For n = 16, set of such divisors is {4, 8, 16}; a(16) = 4*8*16 = 512.

%t Table[Times@@Select[Divisors[n],!SquareFreeQ[#]&],{n,60}] (* _Harvey P. Dale_, Nov 04 2020 *)

%t a[n_] := n^(DivisorSigma[0, n]/2) / (Times @@ FactorInteger[n][[;;,1]])^(2^(PrimeNu[n]-1)); Array[a, 100] (* _Amiram Eldar_, Jul 06 2022 *)

%o (Haskell)

%o a178649 n = div (a007955 n) (a078599 n)

%o -- _Reinhard Zumkeller_, Feb 06 2012

%o (PARI) a(n) = my(p=1); fordiv(n, d, if (!issquarefree(d), p*=d)); p; \\ _Michel Marcus_, Jul 06 2022

%Y Cf. A007947, A007955, A078599.

%K nonn

%O 1,4

%A _Jaroslav Krizek_, Dec 25 2010